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Abstract
Human induced Pluripotent Stem Cells (iPSCs) have enormous potential in understanding developmental biology, disease 
modeling, drug discovery, and regenerative medicine. The initial human iPSC studies used fibroblasts as a starting cell 
source to reprogram them; however, it has been identified to be a less appealing somatic cell source by numerous studies due 
to various reasons. One of the important criteria to achieve efficient reprogramming is determining an appropriate starting 
somatic cell type to induce pluripotency since the cellular source has a major influence on the reprogramming efficiency, 
kinetics, and quality of iPSCs. Therefore, numerous groups have explored various somatic cell sources to identify the prom-
ising sources for reprogramming into iPSCs with different reprogramming factor combinations. This review provides an 
overview of promising easily accessible somatic cell sources isolated in non-invasive or minimally invasive manner such 
as keratinocytes, urine cells, and peripheral blood mononuclear cells used for the generation of human iPSCs derived from 
healthy and diseased subjects. Notably, iPSCs generated from one of these cell types derived from the patient will offer ethi-
cal and clinical advantages. In addition, these promising somatic cell sources have the potential to efficiently generate bona 
fide iPSCs with improved reprogramming efficiency and faster kinetics. This knowledge will help in establishing strategies 
for safe and efficient reprogramming and the generation of patient-specific iPSCs from these cell types.
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and their unsuitability for autologous cell therapy. To obvi-
ate this, a pioneering study was carried out by Yamanaka’s 
group to utilize fibroblasts as the starting cellular source, 
and they could succeed in deriving pluripotent cells with 
a molecular and functional resemblance to ESCs, termed 
as induced pluripotent stem cells (iPSCs) [4]. The initial 
studies involved derivation of human iPSCs from fibroblasts 
by overexpression of a quartet of reprogramming factors, 
namely OCT4, SOX2, KLF4, and c-MYC (OSKM; also 
known as Yamanaka factors) or OCT4, SOX2, NANOG, 
and LIN28 (OSNL; also known as Thomson factors) [5, 
6]. Subsequent studies by various investigators worldwide 
has brought about enormous improvements in the technol-
ogy in terms of efficiency and time regimen required in 
generating iPSCs [7–11]. Moreover, human iPSCs have 
also been differentiated successfully into a wide variety of 
desired cell types, namely cardiomyocytes, neurons, β-cells, 
hepatocytes, blood lineages, and so forth for research and 
biomedical applications [7, 12, 13]. Notably, iPSCs allow 
derivation of autologous pluripotent stem cells circumvent-
ing the embryonic cell source [14]. Thus, the generation of 
patient-specific and disease-specific iPSCs has revolution-
ized stem cell research to influence regenerative medicine, 
drug discovery and improve our fundamental understand-
ing of early embryonic development and specific disease 
mechanisms.

iPSCs have been generated from a variety of somatic 
cell sources, namely fibroblasts, myoblasts, keratinocytes, 
melanocytes, hepatocytes, β-cells, dental pulp cells, blood 
cells, urine-derived renal epithelial cells, amniotic fluid 
stem cells, muse cells, adult stem cells, and so forth [12, 13, 
15–23] with varied reprogramming efficiencies and kinet-
ics, demonstrating that the origin of starting cell source is 
a crucial determining factor. Among these, fibroblasts are 
the most widely used somatic cell source employed for the 
generation of iPSCs due to commercial availability, easy 
handling, economical culture media, and well-established 
cell culture and reprogramming protocols [24]. However, 
this cell type is not an optimal cell source due to several 
disadvantages. It requires skin biopsy for its isolation, which 
is undesirable in children and patients with abnormal wound 
healing or coagulation or skin disorders. It generally takes 
at least four weeks for its expansion to have sufficient cells 
for reprogramming. The patient age and the passage number 
used for reprogramming also play a deterministic role in 
successful reprogramming to obtain iPSCs [25–27]. Hence, 
reprogramming fibroblasts from aged patients is generally 
highly inefficient. The epigenetic state of fibroblasts also acts 
as a major barrier to efficient reprogramming and requires 
remodeling of the epigenome. Furthermore, fibroblasts are 
generally considered a heterogeneous cell population com-
prising mesenchymal and non-mesenchymal cell types [28, 
29]. In addition, the presence of several reprogramming 

barriers and the requirement to undergo mesenchymal-to-
epithelial (MET) transition also add to the lower reprogram-
ming efficiency in fibroblasts [10, 30, 31]. Also, fibroblasts 
have a potential risk of accumulating mutations due to con-
stant exposure to stressors, such as UV rays. Due to this, 
high frequencies of pre-existing coding mutations have been 
observed in the original somatic cell source and the iPSCs 
derived from them [32–34].

For future biomedical applications, it is ideal if geneti-
cally stable iPSCs could be generated from a somatic cell 
source with these essential criteria: (i) should be abundantly 
present in a tissue, (ii) should be accessible with ease, so that 
it can be isolated using minimally invasive procedure, (iii) 
should be easy to culture and expand to get a sufficient num-
ber of cells for reprogramming in a shortest possible time, 
(iv) primarily free from critical somatic mutations and chro-
mosomal aberrations, (v) should be easy to reprogram with 
high efficiency and faster kinetics, (vi) should reprogram 
cells from subjects of different ages and diseased states. This 
review provides an overview of the most promising somatic 
cell sources [keratinocytes, urine cells, and peripheral blood 
mononuclear cells (PBMCs)] that fulfill these criteria and 
aid in yielding bona fide iPSCs with higher efficiency.

Keratinocytes

Keratinocytes are one of the most promising cell sources 
utilized for the generation of iPSCs [35]. These cells are 
keratin protein-enriched epithelial cells that generate the 
outer protective epidermal layer of the skin and appendages 
such as nails and hairs. The process of keratinocyte genera-
tion continues throughout life due to the presence of self-
renewing keratinocyte stem cells [36]. Keratinocytes are one 
of the most easily accessible cell sources from the human 
body (from skin epidermis and hair follicles) [35], and 
hair is the most readily available source for keratinocytes. 
Keratinocytes can be obtained in a non-invasive manner by 
merely plucking a hair (Fig. 1). This results in the isolation 
of transit-amplifying cells having short-term culture poten-
tial [37]. They have three growth phases, namely anagen 
(growth phase), catagen (regression phase), and telogen 
(resting phase) [38]. Hair root in the anagen phase is active 
and is preferred for keratinocyte culture, whereas it is inac-
tive in the catagen or telogen phase [39]. Only the outer 
root sheath needs to be cultured in the medium, whereas the 
rest of the hair shaft can be removed (Fig. 1). Once the hair 
is plucked, it can be kept in the media at room temperature 
for about two days to grow and expand keratinocytes [40]. 
Several media have been developed for keratinocyte culture, 
which share a common feature of low calcium concentration 
to prevent early senescence [40, 41]. Notably, the number of 
passages for reprogramming experiments should not be high 
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(not more than five passages) to prevent complete differen-
tiation and chromosomal aberration(s) [40]. Even though 
several research groups investigated keratinocytes as a start-
ing cell source for the generation of iPSCs due to their non-
invasive derivation from healthy and diseased subjects and 
easy handling [42–44], it is still not commonly used to date 
due to their incompatibility with available reprogramming 
media and certain reprogramming methods like RNA-based 
approaches [40].

Keratinocytes were first reprogrammed to pluripotency 
in 2008 using retroviral transduction of Yamanaka factors 
or three (OSK) factors [42]. Reprogramming keratinocytes 
with four factors was reported to be 100-fold more efficient 
and two times faster than reprogramming human fibroblasts 
[42]. iPSCs derived from keratinocytes had fewer retroviral 
integrations than fibroblast-derived iPSCs [42]. Similarly, 
other studies have also reported that keratinocytes are more 
amenable to efficient reprogramming with faster kinetics 
when compared to fibroblasts [44–47] and cord blood-
derived cells [46]. Notably, keratinocytes are found to have 
the endogenous expression of pluripotency-associated genes, 
namely KLF4 and c-MYC and stem cell marker CD24 [42]. 
Therefore, attempts have been made to reprogram them 
using fewer factors. Although keratinocytes endogenously 
express KLF4, reprogramming without it was unsuccess-
ful [42]. However, retroviral transduction of three-factor 
combination (OSK) generated iPSCs in approximately 20 

days [42, 46]. Inclusion of Tranylcypromine (an inhibitor of 
lysine-specific demethylase 1 and H3K4 demethylation) and 
CHIR99021 (Glycogen synthase kinase inhibitor) resulted 
in reprogramming of human keratinocytes with just two fac-
tors, OCT4 and KLF4 [48].

In addition, iPSCs have been derived using a single poly-
cistronic excisable lentiviral vector harboring Yamanaka 
factors with molecular and functional characteristics simi-
lar to human ESCs [49]. However, integrating viral-based 
approaches involve permanent undesirable integrations of 
transgenes into the target cell genome [11, 50–52]. There-
fore, various integration-free reprogramming approaches 
have been employed to convert keratinocytes into iPSCs effi-
ciently. Non-integrating techniques like Sendai viral vectors 
[43, 53], adenoviral vectors [54], and episomal vectors [27, 
39, 44, 55] have been successfully used to derive iPSCs. But 
using non-integrative approaches for reprogramming affects 
the kinetics as it takes around 18 to 34 days [27, 39, 43, 44, 
53, 56, 57] when compared to integrative approaches, which 
takes around 10-14 days [42, 46, 58]. Various studies report-
ing reprogrammed human keratinocytes are summarized in 
Table 1.

iPSCs are either cultured on growth-arrested feeder cells 
[59] or feeder-free conditions, the latter using matrix pro-
teins like collagen or protein mixtures like Matrigel [60]. 
Therefore, iPSCs either require a matrix or a feeder layer to 
adhere and grow, maintaining their stem cell identity and 

Fig. 1  Isolation and culturing of human keratinocytes derived from human hair and reprogramming them using integration-based or integration-
free reprogramming methods to generate iPSCs
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function. The most commonly used cells for the feeder layer 
are irradiated MEFs [42, 61]. Interestingly, a study showed 
that the type of cell used as a feeder layer could also influ-
ence reprogramming efficiency. Using rat embryonic fibro-
blasts as a feeder layer, a study has reported enhanced repro-
gramming efficiency of keratinocytes due to the upregulation 
of secreted growth factors, namely Tgfb1, Inhba, and Grem1, 
and downregulation of Bmp4 [58].

Keratinocytes have multiple advantages over fibroblasts 
for reprogramming. For instance, fibroblasts have to undergo 
a mesenchymal-to-epithelial transition to be successfully 
reprogrammed to iPSCs [30], whereas keratinocytes are of 
epithelial origin, and therefore this step is not required [62]. 
The exogenous expression of the pluripotency-associated 
genes, namely OSKM, plays a major role in the mesenchy-
mal-to-epithelial transition process in fibroblasts [30]. Also, 
keratinocytes retain their epithelial gene signature, which 
might help improve reprogramming [62]. Importantly, 
genomic characterization of cells from different stages of 

reprogramming suggests that in most somatic cells, pluri-
potency-associated genes are hypermethylated, thereby 
inhibiting their expression. Therefore, reactivation of these 
hypermethylated pluripotency-associated genes is vital for 
successful reprogramming into iPSCs [63]. Evidently, the 
hypermethylation pattern at CpGs and tissue-specific genes 
in keratinocytes are more similar to ESCs than fibroblasts 
[64]. This might be the reason why keratinocytes are effi-
ciently reprogrammed to iPSCs than fibroblasts. Moreover, 
iPSCs derived from keratinocytes have a methylation profile 
very much similar to ESCs than that of iPSCs from fibro-
blasts [64]. Furthermore, analyzing the cellular metabolism 
of iPSCs has revealed that they are highly glycolytic com-
pared to somatic cells [65]. Interestingly, comparing cellular 
metabolism of fibroblasts and keratinocytes has indicated 
that keratinocytes have a close resemblance to iPSCs bio-
energetically than fibroblasts, and this might also be the rea-
son for the higher reprogramming efficiency of keratinocytes 
[65, 66]. Furthermore, the tumor suppressor genes decrease 

Table 1  Various studies that have reported the generation of iPSCs from human keratinocytes

O OCT4, S SOX2, K KLF4, M c-MYC, L LIN28, N NANOG, Lm L-MYC, sm small molecules, shp53 short hairpin RNA against p53, ND Not 
determined
a The time line mentioned in this column is the day when iPSC-like colony was picked for further expansion and characterization

Somatic cell source(s) Reprogramming factors Reprogramming method Reprogramming 
efficiency

Reprogramming 
 kineticsa

In vitro  
characterization

In vivo  
characterization

Reference(s)

Human
keratinocytes

OSKM and OSK Retroviral
transduction

~1% and
0.04-0.06%

14 days
20 days

Yes Yes [42]

Human keratinocytes OSK Retroviral transduction 1.38 ±
0.51%

12-15 days Yes ND [46]

Human keratinocytes OK + sm Lentiviral
transduction

0.002% ~49 days Yes Yes [48]

Human
keratinocytes

OSKM Lentiviral
transduction

0.03±0.002% 21-25 days Yes Yes [49]

Human
keratinocytes

OSKM Lentiviral transduction 2.8% 14 days Yes Yes [58]

Human
keratinocytes

OSKMNL Episomal
vectors

ND 21 days Yes No [55]

Human keratinocytes OSLN
OSKM

Lentiviral transduction 0.01%
0.03%

35-42 days Yes Yes [25]

Human
keratinocytes

OSKLmL + shp53 Episomal
vectors

0.14% 21-30 days Yes Yes [44]

Human
keratinocytes

OSKLmL + shp53 Episomal
vectors

ND 21 days Yes ND [39]

Human keratinocytes OSKLmL + shp53 Adenoviral
transduction

ND 18-28 days Yes Yes [54]

Human
keratinocytes

OSKM Retroviral transduction 0.59±0.03% 14-28 days Yes No [45]

Human
keratinocytes

OSKM
(feeder-free)

Sendai viral transduction ND 26 days Yes No [75]

Human keratinocytes OSKM Sendai viral transduction 0.002-0.01% 14 days ND ND [76]
Human keratinocytes OSKM (feeder-free) Sendai viral transduction ND 28-31 days Yes No [43]
Human
keratinocytes

OSKM Sendai viral transduction 0.01% 28-35 days Yes Yes [53]

Human keratinocytes OSKM (feeder-free) Sendai viral transduction ND 10-12 days Yes No [77]
Human keratinocytes OSKM (feeder-free) Sendai viral transduction ND 18-35 days Yes Yes [78]
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cell proliferation rate and compromise reprogramming effi-
ciency [67]. Therefore, inhibition of these tumor suppressor 
genes and their pathways will pave the way for enhanced 
reprogramming [67]. A gene named Ink4a/Arf activates the 
p53 pathway by activation of effector genes, which eventu-
ally affects the efficiency of reprogramming. Hence, silenc-
ing of Ink4a/Arf locus in keratinocytes helped to enhance 
reprogramming efficiency by almost 100-fold [68]. Besides, 
it was found that the inherent expression of p53 and p21 in 
keratinocytes is low, which might account for its high repro-
gramming efficiency [67]. Nevertheless, further suppression 
of the p53 pathway in keratinocytes lends an additive effect 
to help improve the reprogramming efficiency [67]. Nota-
bly, downregulation of pRb in keratinocytes resulted in a 
3-fold increase in reprogramming efficiency [69]. In addi-
tion, the potent senescence roadblock in keratinocytes can be 
overcome by telomerase overexpression for efficient deriva-
tion of mouse and human iPSCs [70]. Thus, keratinocytes 
have multiple intrinsic advantages that enable their efficient 
reprogramming.

Certain caveats still remain to be addressed pertaining to 
the generation of iPSCs from keratinocytes. First, keratino-
cytes have the propensity to undergo senescence after a few 
passages [37]. Second, they have a longer doubling time, 
leading to a need to carefully cultivate these cells [37]. Also, 
non-integrating and safer approaches like the Sendai viral 
method have yielded a lower reprogramming efficiency of 
0.01% [53]. This might be because the protocols for Sendai 
viral transduction are sub-optimal for keratinocytes. In addi-
tion, reprogramming using an RNA-based approach, which 
has been successfully carried out for other cell types [40, 71, 
72], is problematic in keratinocytes as it requires multiple 
passages and hence may trigger their senescence.

Despite these disadvantages, keratinocytes are an appro-
priate cell source for reprogramming because of their collec-
tion in a non-invasive manner, easy isolation and capability 
to generate iPSCs. Therefore, keratinocyte-derived iPSCs 
are already finding applications to develop disease models 
and form organoids [73]. Specifically, they are preferred to 
derive cells of neural origin as they have a higher tendency 
than other iPSCs to differentiate towards neural precur-
sor cells, possibly due to common ectodermal origin [74]. 
Therefore, they are being explored as a means to generate 
disease models for conditions like Attention Deficit Hyper-
activity Disorder [43] as well as a source of autologous 
stem cells for Spinal Cord Injuries [24]. Disease-specific 
iPSCs have also been generated from keratinocytes by vari-
ous studies for disease modeling and developing novel cell 
therapy applications (Table 2). Thus, with more research on 
keratinocytes, it can serve as a non-invasive, easily acces-
sible, and viable cell source for the generation of iPSCs [35]. 
These keratinocyte-derived iPSCs can be widely employed 
for ‘disease-in-a-dish’ modeling and cell-based therapeutics.

Urine Cells

The search for better cell sources for iPSCs generation per-
haps leads to an unlikely source of cells for reprogramming, 
i.e., human urine (Fig. 2). Human urine satisfies the men-
tioned criteria for an ideal cell source; i.e., it should be readily 
available, universal (regardless of age, sex, and disease condi-
tion), and involve non-invasive collection [14, 81]. Moreover, 
they can be collected without any medical assistance [81]. In 
mammals, the urinary tract consists of the kidney, ureter, uri-
nary bladder, and urethra [82]. Approximately 2000 to 7000 
cells of various types detach from the urinary tract and are 
excreted via urine daily [83]. Urine cells are a heterogeneous 
population of diverse cells, including renal tubular epithelial 
cells, fibroblast-like cells, urothelial cells, and urine-derived 
adult stem cells [82], which endogenously express KLF4 and 
c-MYC with high telomerase activity [84] and cell surface 
markers such as TRA-1-60 and TRA-1-81 [85]. These urine-
derived stem cells are capable of myogenic and uroepithelial 
differentiation [86, 87]. The idea of culturing urine cells began 
as early as 1972. The fact that during the gestation period, 
fetal urine contributes to amniotic fluid lead to a reasonable 
possibility that cells in urine also can be cultured [88].

Collection of urine is routinely done for medical diag-
nosis. Thus, people find it to be an acceptable practice to 
donate urine samples. Around 50 to 200 ml of urine col-
lected from midstream during micturition was shown to 
have a 90% success rate in generating epithelial cell cultures 
[89]. These cells can then be used for reprogramming experi-
ments. Contrastingly, another study reported a lower success 
rate for human urine cell culture [57]. The study found that 
osmolality is an important factor for determining successful 
human urine cell isolation. They deduced that the optimal 
osmolality range for efficient isolation of human urine cells 
was between 241 to 598 mmol/l [57]. Moreover, urine epi-
thelial cells can be successfully isolated from urine samples 
stored for 48 hours at 4 °C [90]. This is advantageous for 
transporting samples using simple storage conditions [90]. 
Generally, a minimum of 50 ml of urine is required to suc-
cessfully isolate urine cells and subsequent reprogramming 
[91]. Moreover, the collection of urine should be carried out 

Table 2  Various studies that have reported the generation of iPSCs 
from human keratinocyte cells isolated from patients

Reprogramming method Disease Reference(s)

Retroviral transduction Cystic Fibrosis [79]
Lentiviral transduction Crohn’s disease [73]
Sendai viral transduction Attention deficit hyperactivity 

disorder
[43]

Epidermolysis bullosa [76]
Atopic dermatitis [80]

Episomal vectors Sickle cell disease [54]
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under aseptic conditions. Interestingly, Mulder and his col-
leagues successfully isolated urine cells obtained from urine 
as minimum as 10 ml, collected in urine bags [91]. This 
study showed that the collection of urine samples is one of 
the easiest and universal methods. All these characteristics 
make urine one of the ideal cell sources for reprogramming.

In 2011, the researchers reported for the first time that 
exfoliated renal tubular cells extracted from urine can be 
infected with retroviral vectors encoding human OCT4, 
SOX2, KLF4, and c-MYC to generate iPSCs with high effi-
ciency (0.1-4%) [81]. In addition to integrating, several non-
integrating approaches have also been applied to reprogram 
urine cells to develop safe iPSC lines that can be used for 
therapeutic purposes (Table 3). Sendai virus [92], episomal 
plasmids [89], RNA-based approaches [93–95], and a com-
bination of episomal plasmids and small molecules [57] have 
all been able to reprogram human urine cells successfully. 
The urine-derived cells were reprogrammed successfully 
using an mRNA approach with faster kinetics than that of 
fibroblasts and dental pulp cells [93]. One caveat of using 
mRNA-based reprogramming is that the expression of repro-
gramming factors is transient, and therefore, multiple trans-
fections are needed to reprogram utilizing this approach [93, 
94]. But this can be overcome by using the self-replicative 
RNA approach, which can generate iPSCs in a single trans-
fection [94, 95]. In addition, several small molecule cocktails 
have also been reported to promote the reprogramming of 
human urine cells to iPSCs [57]. Moreover, iPSCs can also 
be generated under feeder-free conditions from human urine 
cells, which circumvents the problem of cross-contamination 

of feeder cells [89, 93, 96]. Various studies that have repro-
grammed human urine cells are summarized in Table 3.

Besides being a readily available and non-invasive cell 
source, human urine cells have other intrinsic advantages 
over other cell sources. Being epithelial, they do not have 
to undergo MET, which significantly enhances their repro-
gramming efficiency and kinetics than fibroblasts [84, 85]. 
As mentioned earlier, these cells endogenously express 
stem cell-specific genes such as c-MYC and KLF4 with 
high telomerase activity [84] and stem cell surface mark-
ers such as TRA-1-60 and TRA-1-81 [85]. Apart from 
introducing pluripotency-associated genes, additional fac-
tors like miR302-367 and simian virus 40 large T antigen 
(SV40LT) have proven to be effective in the generation 
of iPSCs [85, 89]. In addition, miR302-367 can also be 
used as a substitute for the oncogene c-MYC in the repro-
gramming process [89]. This substitution has proven to be 
effective only in the case of urine cells, not in fibroblasts, 
which demonstrates that urine cells are easier to reprogram 
[89].

Stem cells, in general, largely depend on their extracel-
lular environment or otherwise called “niche,” for their func-
tion and maintenance [97]. The extracellular environment 
plays a vital role in cell-matrix adhesion and influences cell-
cell adhesion. Therefore, modifying the extracellular micro-
environment of iPSCs might favor enhanced reprogramming 
efficiency. Recently, reprogramming human urine cells in a 
three-dimensional self-assembling peptide hydrogel Purama-
trix, rather than a regular two-dimensional Matrigel, has 
shown efficient generation of iPSC colonies [98]. Although 

Fig. 2  Isolation and culturing of human urine cells derived from human urine and reprogramming them using integration-based or integration-
free reprogramming methods to generate iPSCs
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reprogramming efficiencies were comparable between the 
two stated approaches, the iPSC colonies in the former case 
were found to be more homogeneous [98]. Studies have 
also shown that human iPSCs have remnants of epigenetic 
memory of their starting cell source [74], which makes them 
biased towards differentiating into specific lineages only. 
Interestingly, iPSCs derived from urine cells have shown no 
such propensity to differentiate into particular lineages only 
[99]. However, the major issue concerning the derivation of 
iPSCs from human urine cells is that the efficiency differs 
significantly from donor to donor [81]. The reprogramming 
efficiency also decreases with increasing passages of human 
urine cells [81]. Moreover, urine cannot be collected from 
people with rare renal defects like renal insufficiency and 
cystectomy [82].

Notably, the applicability of urine-derived iPSCs in 
the field of therapeutics has been widely studied and ana-
lyzed. Urine-derived iPSCs have been of immense help for 

developing disease models for diseases like dystrophic car-
diomyopathy [84, 92, 100], ventricular septal defects [101], 
hemophilia A [102], diabetes mellitus [103], hepatocyte 
polarity [104], systemic lupus erythematosus [105], and 
neurodevelopment diseases like autism spectrum disorder 
[106, 107], and multiple sclerosis [108]. Furthermore, the 
application of urine-derived iPSCs have been investigated 
by developing patient-specific cells or organoids like micro-
vascular grafts for hemophilia A [109], kidney organoids for 
congenital anomalies [91], tooth-like structures [110], retinal 
organoids [111], neural progenitor cells for spinal cord inju-
ries [112], and cerebral organoids [113]. These applications 
undoubtedly exemplify the enormous potential and utility 
of urine-derived iPSCs. Patient- and disease-specific iPSCs 
have also been generated from urine cells by several stud-
ies for disease modeling and developing novel cell therapy 
applications (Table 4). Human urine cells are therefore con-
sidered as a viable source for the generation of iPSCs, which 

Table 3  Various studies that have reported the generation of iPSCs from human Urine Cells (UCs) derived from healthy subjects

O OCT4, S SOX2, K KLF4, M c-MYC, SV40LT simian virus 40 large T antigen, miR microRNA, sm small molecules, L LIN28, Lm L-MYC, G 
GLIS1, shp53 short hairpin RNA against p53, TA↑ high telomerase activity, TA↓ low telomerase activity, srRNA self-replicative RNA, ND: Not 
determined
a The time line mentioned in this column is the day(s) when iPSC-like colony was picked for further expansion and characterization

Somatic cell 
source

Reprogramming factors Reprogramming method Reprogramming 
efficiency

Reprogramming 
 kineticsa

In vitro  
characterization

In vivo  
characterization

Reference(s)

Human UCs OSKM Retroviral
transduction

0.01-4% 16-25 days Yes Yes [81]

Human UCs OSK + SV40LT + miR302/367 + 
sm (feeder-free)

Episomal vectors 0.2% ~25 days Yes No [114]

Human UCs OSKML + SV40LT Episomal
vectors

0.0001-0.007% 20-30 days Yes Yes [89]

Human UCs OSKM (feeder-free) Lentiviral 0.1-0.5% (TA↑)
0.002-0.007% (TA↓)

17 days Yes Yes [84]

Human UCs OSKLmL + shp53 + SV40LT 
(xeno-free)

Episomal vectors ~0.3% 18-23 days Yes Yes [96]

Human UCs OSKLmL + p53mutant + 
miR302/367 (feeder-free)

Episomal vectors 1.5% 20-30 days Yes No [85]

Human UCs OSKM Sendai viral transduction ND 10 days Yes No [115]
Human UCs OSKM (feeder-free) Sendai viral

transduction
0.0049% 20-25 days Yes Yes [90]

Human UCs OSKLmL + shp53 (feeder-free) Episomal vectors 0.0028% 35 days Yes Yes [90]
Human UCs OSKM (with and without feeder) Sendai viral transduction 0.001-0.1% 16 days Yes Yes [112]
Human UCs OSKLmL + EBNA1 + shp53 Episomal

vectors
ND 20 days No No [116]

Human UCs OSKM Sendai viral transduction ND ND Yes No [117]
Human UCs OSKLmG + miR-302 cluster Episomal

vectors
0.00021-0.0741% 19 days Yes Yes [118]

Human UCs OSKM Sendai viral transduction ND 21 days Yes Yes [106]
Human UCs OSKM srRNA

transfection
ND 26-33 days Yes Yes [94]

Human UCs OSK+SV40LT+ miR302/367 
(feeder-free)

Episomal
vectors

ND 18-25 days Yes No [119]

Human UCs OSK + SV40LT+ miR302/367 
(feeder-free)

Episomal vectors ~0.05% 20 days Yes Yes [98]

Human UCs OSKMG (feeder-free) srRNA transfection 0.008-0.17% 18-21 days Yes No [95]
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then have broad applications in the field of disease modeling 
and therapeutics.

Peripheral Blood Mononuclear Cells (PBMCs)

PBMCs can be isolated from various sources, namely cord 
blood, bone marrow, and peripheral blood. PBMCs isolated 
from blood serve as one of the most popular somatic cell 
sources for iPSCs generation (Fig. 3). Culturing and expan-
sion of PBMCs are simpler and easier. While the collection 
of peripheral blood and cord blood for isolation of mono-
nuclear cells is less invasive, the same for bone marrow is 
highly invasive. PBMCs are usually extracted from the buffy 
coat layer by Ficoll-Paque density gradient centrifugation 
from whole blood (Fig. 3) [126]. Isolated PBMCs consist of 
monocytes, natural killer cells, lymphocytes, dendritic cells, 
and hematopoietic stem cells/hematopoietic progenitor cells. 
Among these, lymphocytes contribute to a large fraction of 
the PBMCs population.

The initial studies reprogrammed terminally differenti-
ated mature T and B lymphocytes to give rise to iPSCs 
using viral-based techniques [127–130]. Also, integra-
tion-free methods have been successfully employed to 
efficiently reprogram B and T lymphocytes and Epstein 
Barr Virus immortalized lymphoblastoid cells [19, 127, 
131–136]. Although B and T lymphocytes are ample in 
PBMCs and easier to culture, they are not preferred for 

reprogramming as they are subjected to intrinsic DNA 
rearrangements at the V(D)J as well as T cell receptor loci 
to give rise to a vast and highly diverse repertoire of anti-
gen-specific surface immunoglobulins from a relatively 
limited number of genes [137]. These irreversible DNA 
rearrangements are then perpetuated in iPSCs derived 
from these cells, and their potential effect on the proper 
differentiation of iPSCs is not yet investigated. Addition-
ally, reprogrammed T cells have been shown to induce 
spontaneous T cell lymphomas in mice [138], limiting 
their broad applications in regenerative medicine. There-
fore, a protocol that enriches erythroblast-like cells and 
eliminates lymphocytes is preferred [139]. Interestingly, 
B cells isolated from the human fetal liver are repro-
grammed much more efficiently than B cells isolated 
from peripheral blood or cord blood [136]. This result 
shows that cell ontogeny might influence reprogramming 
efficiency. On the other hand, the  CD34+ cells, present 
in PBMCs, are highly proliferative and efficiently repro-
grammable [129, 137, 140–144]. But this cell population 
is rare (<0.01%) in PB [137], which is why patients are 
subcutaneously injected with stem cell mobilizers such 
as granulocyte colony-stimulating factor to obtain these 
progenitor cells in large numbers from circulating periph-
eral blood. This is only possible if the human subject 
is in good medical condition. Also, stem cell mobiliza-
tion is associated with major side effects in patients and 
requires a multi-day dosing regimen [145, 146]. A study 

Table 4  Various studies that 
have reported the generation of 
iPSCs from human urine cells 
isolated from patients

Reprogramming method Disease Reference(s)

Lentiviral transduction Systemic lupus erythematosus [105]
Duchenne muscular dystrophy [84]

Sendai viral transduction Muscular dystrophy [92]
Fibrodysplasia ossificans progressive [120]
Attention deficit hyperactivity disorder [121]
Ventricular septal defect [101]
Autism spectrum disorder [106, 122]
Hearing loss [123]
Type 2 diabetes mellitus [103]

Episomal vectors Alports disease [89]
Type 2 long QT syndrome [124]
Hemophilia A/B [89, 109]
Amyotrophic lateral sclerosis [89]
β-thalassemia [89]
Multiple sclerosis [108]
Autism spectrum disorder [107]
Congenital anomalies of the kidney and urinary 

tract
[91]

Spinocerebellar ataxia type 1 [125]
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has reported functional differences between cells from 
mobilized and non-mobilized blood samples, indicating 
that the intrinsic characteristics of the cells have been 
altered [147]. In addition, it has been reported that chro-
mosomal aneuploidy can occur in cells mobilized with 
granulocyte colony-stimulating factor [148]. In agree-
ment with this, genetic and epigenetic abnormalities have 
been observed in cells isolated from patients mobilized 
with granulocyte colony-stimulating factor [148, 149]. 
These observations highlight the possibility of introduc-
ing similar genomic and epigenomic modifications that 
would perpetuate into iPSCs derived from mobilized 
cells and potentially affect their function. Therefore, it 
is more desirable to acquire blood that does not necessi-
tate donors to receive these mobilizers to circumvent the 
adverse side effects and chromosomal abnormalities. In 
addition, the iPSCs derived from non-lymphocytes having 
intact genomes will be more appropriate for therapeutic 
applications [139].

The first study to reprogram PBMCs (from mobilized 
human  CD34+ cells from PB) to iPSCs was carried out 
by Loh and colleagues [140]. In this study, the research-
ers delivered Yamanaka factors retrovirally to generate 
iPSCs, which were indistinguishable from human ESCs 
with respect to morphology, expression of cell surface 
and pluripotency-associated markers, DNA methyla-
tion at key pluripotency genes, and the ability to dif-
ferentiate in vitro and in vivo into all three germ layers. 
Subsequently, the same lab derived iPSCs from both 
 CD34+ cells and mononuclear cells from the PB (non-
mobilized) obtained from healthy donors via lentiviral 

transduction of Yamanaka factors [129]. Another study 
generated iPSCs from nonmobilized human PBMCs by 
retroviral transduction of Yamanaka factors [150]. The 
authors in this study observed that  5x105 PBMCs, which 
corresponds to less than 1 mL of peripheral blood, were 
sufficient for the derivation of numerous iPSC colonies. 
Although the usage of viral vectors gives higher repro-
gramming efficiencies, their integration into the host 
genome causes genetic instability in iPSCs due to high 
frequencies of insertional mutagenesis [151], which, 
very likely, will affect its biological function. There-
fore, non-integrative approaches like the Sendai virus 
and episomal vectors are preferred for reprogramming for 
potential clinical applications [8, 9, 11]. Therefore, stud-
ies have demonstrated that integration-free approaches 
such as Sendai virus and episomal vectors can also be 
efficiently employed for reprogramming PBMCs iso-
lated from healthy subjects [131, 142–144, 152–165] 
and patients [153]. The iPSCs derived in these stud-
ies were free from any genomic integration, expressed 
pluripotency-associated genes, karyotypically normal, 
and efficiently differentiated into various cell types in 
vitro and in vivo. Notably, studies have also demonstrated 
that iPSCs can be generated from PBMCs isolated from 
less than 10 ml of blood [142, 143, 150, 153, 156–161, 
163, 165–174]. Importantly, the epigenetic signatures 
and gene expression patterns of PBMCs are closer to 
ESCs and iPSCs than those of the age-matched fibro-
blasts, which results in faster reprogramming (14 days) 
of PBMCs compared to age-matched fibroblasts (28 
days) [141, 175]. Incorporating a histone deacetylase 

Fig. 3  Schematic representation of isolation of PBMCs from whole 
blood (collected by venipuncture/finger prick/cryopreserved blood) 
by density gradient centrifugation using Ficoll-paque and its subse-

quent reprogramming into iPSCs using integration-based and integra-
tion-free methods
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inhibitor (sodium butyrate or valproic acid) has also 
been reported to enhance the reprogramming efficiency 
[175]. Reprogramming kinetics and efficiency can also 
be further improved by including some additional factors 
apart from OSKM. Specifically, the inclusion of an anti-
apoptotic factor, BCL-XL, increases the reprogramming 
efficiency by 10-fold [161, 176]. Recently, the episomal 
vector combination was fine-tuned to demonstrate ~100-
fold improvement in the reprogramming of human adult 
PBMCs [177]. To accomplish this, OCT4 and SOX2 
were cloned in a single episomal vector and connected by 
a 2A peptide linker for their equimolar expression. Addi-
tionally, two separate episomal vectors having c-MYC 
and KLF4 were used to achieve a higher and steadier 
increase in c-Myc over KLF4 expression during the 
course of cell reprogramming. These alterations, along 
with the expression of BCL-XL, contributed to improved 
efficiency [177]. However, addition of other factors 
episomally along with OSKM like LIN28 in PBMCs, 
and LIN28 and shRNA against p53 in lymphoblastoid 
cells gave comparable efficiencies to that of iPSCs gen-
erated from PBMCs by transfection of OSKM factors 
episomally [134, 178]. It is reported that PBMCs are 
50-fold less efficient than cord blood mononuclear cells 
for iPSCs generation. The efficiency can also be further 
improved by including additional factors like SV40 Large 
T antigen and EBNA1 [137, 160, 175]. Numerous stud-
ies that have reprogrammed human PBMCs are summa-
rized in Table 5. Patient- and disease-specific iPSCs have 
also been generated from PBMCs by numerous studies 
for disease modeling and developing novel cell therapy 
applications (Table 6).

Most methods require 10 ml of whole blood, requiring 
minimal invasiveness for PBMC isolation. Interestingly, 
iPSCs can also be generated successfully by reprogram-
ming cells isolated from whole blood as little as 10 µl 
collected by the finger-prick method [157]. The finger-
prick method of collecting blood is considered one 
of the least invasive and less complicated procedures 
[157]. Besides, blood cells can also be cryopreserved 
and reprogrammed in the future without any compromise 
in reprogramming kinetics and efficiency [165]. Also, 
PBMCs are stable at room temperature for up to 24-48 
hours and can resist multiple freeze-thaw cycles while 
maintaining their genomic integrity and reprogramming 
ability [153, 163]. This ease in access, isolation, and 
maintenance makes them an attractive candidate as a 
somatic cell source for reprogramming. However, the 
major limitation of using PBMCs as a source for iPSC 
generation is that whole blood samples from patients 
with clotting disorders may not give quality iPSCs. 
Further, the epigenetic marks from PBMCs like V(D)J 
rearrangements in B and T lymphocytes might transfer 

to iPSCs, hindering its differentiation potential [137]. 
Therefore, a thorough screening of iPSC clones repro-
grammed only from purified hematopoietic progenitors 
or myeloid-erythroid cells is required before its fur-
ther use. Also, the reprogramming efficiency relies on 
the donor, i.e., different reprogramming efficiency is 
reported for different donors even when the same repro-
gramming technique and factors were used [175].

In general, PBMCs serves as the most abundant and 
convenient source of somatic cells because sample col-
lection is less cumbersome, cheap, easily accessible, 
less exposed to environmental mutagens, and devoid of 
ethical complications than other somatic cell sources 
such as hepatocytes, β-cells, and so forth. Also, it allows 
access to several frozen samples stored at blood banks 
worldwide, and iPSCs can also be derived from these fro-
zen human peripheral blood samples [160, 179]. iPSCs 
derived from such samples can provide abundant cells to 
screen for genetic factors and to elucidate the molecular 
mechanisms fundamental to lymphoid and myeloid blood 
disorders. Moreover, the “epigenetic memory” of blood-
derived iPSCs will drive their differentiation, particularly 
towards blood cell type [66, 74], making them suitable 
for the development of disease models, pre-clinical drug 
screening, and identifying a cure for various hematopoi-
etic diseases [180]. Despite this, PBMC-derived iPSCs 
can be coaxed to differentiate towards other cell types 
such as mesenchymal stem cells, neural stem cells, car-
diomyocytes, hepatocytes, and so forth [144, 164, 165, 
180, 181]. Importantly, the iPSCs generated using PBMCs 
are of good quality with better efficiencies and kinetics. 
Notably, all the colonies picked from reprogrammed 
PBMCs established stable iPSC clones, which could be 
expanded and cryopreserved compared to those picked 
from reprogrammed fibroblasts [166]. In fact, the clinical 
significance and advantage of using PBMCs as a somatic 
cell source for iPSCs generation can be seen in Japan’s 
iPSC stock project, which started in 2013 [182]. Their 
main objective is to generate a human leukocyte antigen 
homozygous haplobank and support research related to it. 
The prospect of iPSC banking seems exciting and opens 
up new opportunities for personalized medicine, although 
there is still a long way to go, and PBMCs seem to be one 
of the most practical sources with promising results.

Conclusion and Future Perspectives

Numerous studies have reported the derivation of iPSCs 
from a variety of cell sources using integration-based and 
integration-free approaches [7–9, 11, 211, 212]. The poten-
tial applications of iPSCs are limited due to several barriers 
that act as roadblocks to prevent efficient reprogramming [7, 
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Table 5  Various studies that have reported generation of iPSCs from  PBMCsa isolated from healthy individuals

Somatic cell 
source(s)

Reprogramming factors Reprogramming method Reprogramming 
efficiency

Reprogramming 
 kineticsb

In vitro  
characterization

In vivo  
characterization

Reference(s)

PBMCs
(CD34+)

OSKM Retroviral transduction ND 14 days Yes Yes [140]

PBMCs
(CD34+)

OSKM Lentiviral transduction 0.002% 21 days Yes Yes [129]

PBMCs OSKM Lentiviral transduction 0.0008-0.001% 35 days Yes Yes [129]
PBMCs OSKM Sendai viral transduction 0.1% 25 days Yes Yes [131]
PBMCs OSKM Lentiviral transduction 0.001-0.0002% 25-40 days Yes Yes [179]
PBMCs
(CD34+)

OSKML Episomal
vectors

0.001% 14 days Yes Yes [175]

PBMCs OSKM Retroviral transduction ND 12-23 days Yes Yes [150]
PBMCs
(CD34+)

OSKLmL + SV40LT Episomal
vectors

~0.005% ND Yes Yes [143]

PBMCs OSKM
(feeder-free)

Lentiviral transduction 0.002-0.01% 14-21 days Yes Yes [60]

PBMCs OSKML Episomal
vector

ND 14 days Yes Yes [139]

PBMCs OSKM Lentiviral transduction ND 21-31 days Yes No [166]
PBMCs OSKM Sendai viral transduction ND 18-20 days No No [183]
PBMCs
(CD34+)

OSKM Lentiviral transduction ND 18-35 days Yes Yes [142]

PBMCs
(CD34+)

OSKML + shp53 + 
SV40LT + EBNA1

Episomal
vectors

0.0005% 16-25 days Yes Yes [160]

PBMCs
(CD34+)

OSKM + BCL-XL Episomal
vectors

0.2% 21-28 days Yes Yes [161]

PBMCs OSKM Sendai viral transduction 0.02-0.27% 21-28 days Yes Yes [156]
PBMCs OSKM Lentiviral transduction ND ND Yes Yes [180]
PBMCs OSKM Sendai viral transduction 0.008-0.024% ~20 days Yes Yes [157]
PBMCs OSKM Sendai viral transduction 0.011±0.006% 16 days Yes No [174]
PBMCs OSKLLm + shp53 + 

EBNA1
Episomal
vectors

~0.01% 20-30 days Yes Yes [162]

PBMCs OSKM Sendai viral transduction ND 20-40 days No No [168]
PBMCs OSKM Sendai viral transduction 0.0015-0.06% ~14 days Yes No [163]
PBMCs OSKM +

BCL-XL
(feeder-free;
xeno-free)

Episomal
vectors

0.04-0.045% 14 days Yes Yes [137]

PBMCs OSKM and OSKMLN 
(xeno-free)

Episomal
vectors

0.00025% and 
0.00085%

12-30 days Yes Yes [27]

PBMCs OSKLmL Episomal
vectors

0.033% 14 days Yes No [164]

PBMCs OSKM Sendai viral transduction 0.15–0.32 %, 7-10 days Yes No [165]
PBMCs OSKM Sendai viral transduction ~0.003-0.06% 14-21 days Yes No [169]
PBMCs OSKM + BCL-XL Episomal

vectors
ND ND Yes Yes [158]

PBMCs OSKM + BCL-XL Episomal
vectors

0.01-0.2% 14-19 days Yes Yes [177]

PBMCs OSKML Episomal
vectors

ND 20-26 days Yes No [184]

PBMCs OSKM Sendai viral transduction ND ND Yes No [170]
PBMCs OSKM Sendai viral transduction ND ~21 days Yes No [171]
PBMCs OSKM Sendai viral transduction 0.1-0.5% ~27 days Yes No [159]
PBMCs OSKM

(feeder-free)
Sendai viral transduction 0.01% 21-28 days Yes Yes [172]

PBMCs OSKM
(feeder free)

Sendai viral transduction 0.17% 8-14 days Yes No [153]

PBMCs
(CD34+)

OSKM
(feeder free)

Sendai viral transduction 5.58% 8-14 days Yes No [153]
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10, 211, 213]. To realize the full potential of this technol-
ogy, attempts have been made to reprogram a diverse array 
of cell types derived from different cell sources, some of 
which are discussed in this review, namely keratinocytes 

which are easier to obtain, isolate and reprogram, urine 
cells which are easier to collect and universally applicable 
to all irrespective of age and gender, and PBMCs which is 
the most commonly collected sample for diagnostics (also 

PBMCs Peripheral blood mononuclear cells, O OCT4, S SOX2, K KLF4, M c-MYC, Lm L-MYC, L LIN28, N Nanog, SV40LT Simian vacuolat-
ing virus 40 large T antigen, shp53 short hairpin RNA against p53 EBNA1 Epstein-Barr nuclear-antigen 1 BCL-XL B-cell lymphoma-extra large 
ND Not determined
a Only studies that have reprogrammed PBMCs (without purification) are discussed in this table. Studies involving reprogramming of lympho-
cytes (T or B) have been excluded due to reasons mentioned in the manuscript
b The time line mentioned in this column is the day when iPSC-like colony was picked for further expansion and characterization

Table 5  (continued)

Somatic cell 
source(s)

Reprogramming factors Reprogramming method Reprogramming 
efficiency

Reprogramming 
 kineticsb

In vitro  
characterization

In vivo  
characterization

Reference(s)

PBMCs OSKM + BCL-XL Episomal
vectors

ND 18-21 days Yes Yes [144]

PBMCs OSKM
(feeder-free)

Sendai viral transduction 0.008-0.1% 14 days Yes

OSKM
(feeder-free)

0.01-0.19% 14 days Yes

Table 6  Various studies that 
have reported the generation of 
iPSCs from PBMCs isolated 
from patients

Reprogramming method Disease Reference(s)

Retroviral transduction Myeloproliferative disorders [141]
Lentiviral transduction Mucopolysaccharidosis type II [185]
Sendai viral transduction Craniometaphyseal dysplasia [167]

Bernard–Soulier syndrome [186]
Schizophrenia [187]
Early onset Alzheimer’s disease [188]
Late onset Alzheimer’s disease [189]
Triple negative breast cancer [190]
Parkinson Disease [191]
Sickle cell anemia [192]
Autism Spectrum Disorder [193]
Werner syndrome [194]
Amyotrophic lateral sclerosis [195]
Familial Platelet Disorder with associated Myeloid Malignancy [196]
Autism-related Activity-Dependent Neuroprotective Protein [197]
Cri du Chat Syndrome [198]
Attention deficit hyperactivity disorder [199]
Catecholaminergic polymorphic ventricular tachycardia [200]
Noonan syndrome [155]
Pulmonary arterial hypertension [201]
β-thalassemia [202]

Episomal vectors Alzheimer’s disease [203, 204]
Parkinson Disease [205]
Cystic fibrosis [206]
α-1 antitrypsin deficiency [206]
Sickle cell anemia [207]
Duchenne muscular dystrophy [173]
Young-onset Parkinson’s disease [208]
Amyotrophic lateral sclerosis [178]
Multiple Sclerosis [176]
Immunoglobulin A nephropathy [209]
Maple syrup urine disease [210]
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other promising cell sources such as adult stem cells; not 
discussed in this review due to their isolation in an invasive 
manner) to generate mouse and human iPSCs efficiently. 
The origin of cell type dictates the path to pluripotency and 
involves crucial events such as loss of somatic cell iden-
tity, MET (in cell types which are of non-epithelial origin), 
the degree to which they undergo developmental reversion, 
and reactivation of the pluripotency network [62]. It is very 
likely that other promising cell sources are still unexplored 
and may have a high reprogramming potential, which is 
still unknown due to limited knowledge on good biomark-
ers. For example, late-outgrowth endothelial progenitor 
cells  (CD34+ cells) derived from blood showed a 10-fold 
increase in reprogramming efficiency (0.22%; 10-fold more 
efficiently than human fibroblasts) and faster kinetics (10 
days vs. 15 days for human fibroblasts) when used as a start-
ing cell source [214].

It is also crucial that iPSCs formed have minimal or are 
ideally devoid of any crucial genetic mutations and chro-
mosomal aberrations in them. Also, the epigenetic mem-
ory, which is a characteristic of the somatic cell source 
of origin, is required to be erased in iPSCs to avoid any 
impact on their differentiation potential. One of the inher-
ent properties of iPSCs is their indefinite self-renewal and 
their capability to form teratoma. The presence of undif-
ferentiated residual iPSCs during differentiation may lead 
to tumor formation and hence pose a serious challenge 
in its clinical applications. However, this can be circum-
vented by sorting pure populations of differentiated cells 
or removal of pluripotent stem cells using different strate-
gies before transplantation [53, 215–221]. Another aspect 
of improving the safety of iPSCs is using integration-free 
reprogramming strategies instead of the commonly used 
integration-based approaches [7, 8, 11, 212, 213, 222]. In 
addition, one of the major requirements is to establish a 
GMP-compliant system for the derivation of clinical-grade 
iPSCs. To accomplish this, a fast, robust, and simple iPSC 
generation strategy from an ideal somatic cell source under 
feeder-free, serum-free, and xeno-free (ideally chemically 
defined culture conditions) conditions using an integra-
tion-free approach is highly desirable. Further extensive 
research to characterize and identify ideal somatic cell 
sources, which will yield genetically stable iPSCs with 
improved efficiency and kinetics, is crucial for biobanking 
and various biomedical applications. This will eventually 
translate this promising technology to generate patient-
specific iPSCs for clinical applications.
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